
CS 4530: Fundamentals of Software Engineering

Module 4: Interaction-Level Design Patterns

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• By the end of this lesson, you should be able to

• Explain how patterns capture common solutions and
tradeoffs for recurring problems.

• Give 4 examples of interaction patterns and describe
their distinguishing characteristics

• Draw a picture or give an example to illustrate each one

2

What is a Pattern?
• A pattern should contain

• A statement of the problem being solved
• A solution of the problem
• Alternative solutions
• A discussion of tradeoffs among the solutions.

• For maximum usefulness, a pattern should have a
name.

• So you can say “here I’m using pattern P” and people
will know what you had in mind.

3

Patterns help communicate intent
• If your code uses a well-known pattern, then the

reader has a head start in understanding your code.

4

Patterns make code more comprehensible

5

Patterns are intended to be flexible
• We will not engage in discussion about whether a

particular piece of code is or is not a “correct”
instance of a particular pattern.

6

Patterns at the Interaction Level correspond
to OOD Design Patterns
• Four guys in the 90’s wrote a book that lists a lot of

patterns.
• But this is not the be-all and end-all of patterns
• We’ll see patterns at lots of different levels.

7

The Interaction Scale: Examples
1. The Pull pattern
2. The Push pattern (aka the Observer* Pattern or

Listener Pattern)
3. The Factory* Pattern
4. The Singleton Pattern* (aka the Lying Factory)

8

*These are “official Design Patterns”
that you will see in Design Patterns
Books

Information Transfer: Push vs Pull

9

class Producer {
theData : number

}

class Consumer {
neededData: number
doSomeWork () {

doSomething(this.neededData)
}

}

• How can we get a
piece of data from
the producer to
the consumer?

Pattern 1: consumer asks producer ("pull")

10

class Producer {
theData : number
getData () {return this.theData}

}

class Consumer {
constructor(private src: Producer) { }
neededData: number
doSomeWork() {

this.neededData = this.src.getData()
doSomething(this.neededData)

}
}

• The consumer
knows about the
producer

• The producer has
a method that the
consumer can call

• The consumer
asks the producer
for the data

Pattern 2: producer tells consumer ("push")

11

class Producer {
constructor(private target : consumer) {}
theData : number
updateData (input) {

// ..something that changes theData..
// notify the consumer about the change:
this.target.notify(this.theData)

}
}

class Consumer {
neededData: number
notify(val: number) { this.neededData = val }
doSomeWork () {

doSomething(this.neededData)
}

}

• Producer knows the
identity of the
consumer

• The Consumer has a
method that
producer can use to
notify it.

• Producer notifies the
consumer whenever
the data is updated

• Probably there will
be more than one
consumer

This is called the Observer Pattern
• Also called "publish-subscribe pattern"
• Also called "listener pattern"
• The object being observed (the "subject") keeps a

list of the objects who need to be notified when
something changes.

• subject = producer = publisher

• When a new object wants to be notified when the
subject changes, it registers with ("subscribes to")
with the subject/producer/publisher

• observer = consumer = subscriber = listener

12

Push vs. Pull: Tradeoffs

PULL PUSH
The Consumer knows about the
Producer

Producer knows about the Consumer(s)

The Producer must have a method that
the Consumer can call

The Consumer must have a method that
producer can use to notify it

The Consumer asks the Producer for the
data

Producer notifies the Consumer whenever the
data is updated

Better when updates are more frequent
than requests

Better when updates are rarer than requests

13

Example: A Clock: IClock.ts
• The interface for a

simple clock

14

export default interface IClock {

// sets the time to 0
reset():void

// increments the time
tick():void

// returns the current time
getTime():number

}

simpleClockUsingPull.ts

15

import IClock from "./IClock";

export class SimpleClock implements IClock {
private time = 0
public reset () : void {this.time = 0}
public tick () : void { this.time++ }
public getTime(): number { return this.time }

}

export class ClockClient {
constructor (private theclock:IClock) {}
getTimeFromClock ():number {

return this.theclock.getTime()
}

}

The Producer

The Consumer

Let's test this: first try

16

// create a clock and test it
const clock1 = new SimpleClock
console.log(clock1.getTime()) // should print (0)
clock1.tick()
clock1.tick()
console.log(clock1.getTime()) // should print (2)
clock1.reset()
console.log(clock1.getTime()) // should print (0)
// now test the client
const client1 = new ClockClient(clock1)
console.log(clock1.getTime()) // should print (0)
console.log(client1.getTimeFromClock()) // should print (0)
clock1.tick()
clock1.tick()
console.log(client1.getTimeFromClock()) // should print (2)

index.ts

Use automated tests instead

17

import { SimpleClock, ClockClient } from "./simpleClockUsingPull";
test("test of SimpleClock", () => {

const clock1 = new SimpleClock
expect(clock1.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(clock1.getTime()).toBe(2)
clock1.reset()
expect(clock1.getTime()).toBe(0)

})
test("test of ClockClient", () => {

const clock1 = new SimpleClock
expect(clock1.getTime()).toBe(0)
const client1 = new ClockClient(clock1)
expect(clock1.getTime()).toBe(0)
expect(client1.getTimeFromClock()).toBe(0)
clock1.tick()
clock1.tick()
expect(client1.getTimeFromClock()).toBe(2)

})

simpleClockWithPull.test.ts

Pattern 2: producer tells consumer ("push")

18

class Producer {
constructor(private target : consumer) {}
theData : number
updateData (input) {

// ..something that changes theData..
// notify the consumer about the change:
this.target.notify(this.theData)

}
}

class Consumer {
neededData: number
notify(val: number) { this.neededData = val }
doSomeWork () {

doSomething(this.neededData)
}

}

• Producer knows the
identity of the
consumer

• The Consumer has a
method that
producer can use to
notify it.

• Producer notifies the
consumer whenever
the data is updated

• Probably there will
be more than one
consumer

Interface for a clock using the Push pattern

19

clockUsingPush.tsexport interface IProducerClock {

reset():void // resets the time to 0

/**
* increments the time and sends a .notify message with the
* current time to all the consumers
*/
tick():void

// adds another consumer
addConsumer(listener:IClockConsumer):void

}

Interface for a clock listener

20

interface IClockConsumer {
/**
* * @param t - the current time, as reported by the clock
*/
notify(t:number):void

}

Review: TypeScript interfaces

21

// getx(), gety() return the x,y coordinates of the point
interface IPoint {getx():number, gety():number}

class CartesianPoint implements IPoint {
constructor (private x : number, private y : number) {}
getx() {return this.x}
gety() {return this.y}

}

// r is radius, theta is angle (in radians)
class PolarPoint implements IPoint {

constructor (private r:number, private theta:number) {}
getx() {return this.r * Math.cos(this.theta)}
gety() {return this.r * Math.sin(this.theta)}

}

const point1 = new CartesianPoint(0.0, 1.0)
const point2 = new PolarPoint(1.0, Math.PI/2.0)

Go review your Typescript
materials if you need to
and then come back to
this lesson...

Interfaces are where we specify behaviors
• A temperature sensor is something that returns the

current temperature at the sensor's location:

• Note that the interface specifies both syntax (the
method name) and the semantics (what the
method returns or what it does).

22

// temperatures are measured in Celsius
type Temperature = number

interface AbsTemperatureSensor {
// returns the current temperature at the sensor location
getTemperature () : Temperature

}

OO Principle 1: Make Your Interfaces
Meaningful
• Interfaces are the thing we use to specify the

behavior of the classes and objects that implement
them.

• We use the word behavior to mean what a single
method does:

• Returning a value is a behavior
• Having some kind of side-effect (mutation, I/O, etc.) is a

behavior

23

But the compiler only checks syntax, not
semantics
• If we defined a class that had a getTemperature

method, but that did not return the temperature at
the sensor location, this would not be a correct
implementation of AbsTemperatureSensor. For
example:

• The compiler would accept this, but we shouldn't.

24

class NotReallyASensor implements AbsTemperatureSensor {
getTemperature () {return 42}

}

Just for fun, make up
3 more classes that
the compiler would
accept but are not
correct
implementations of
AbsTemperatureSenso
r.

Interface for a clock using the Push pattern

25

clockUsingPush.tsexport interface IProducerClock {

reset():void // resets the time to 0

/**
* increments the time and sends a .notify message with the
* current time to all the consumers
*/
tick():void

// adds another consumer
addConsumer(listener:IClockConsumer):void

}

Interface for a clock listener

26

interface IClockConsumer {
/**
* * @param t - the current time, as reported by the clock
*/
notify(t:number):void

}

We could have called this onTick

A ProducerClock class

27

export class ProducerClock implements IProducerClock {
time: number = 0
reset() { this.time = 0 }
tick() { this.time++; this.notifyAll() }

private observers: IClockConsumer[] = []
public addConsumer(obs:IClockConsumer) {

this.observers.push(obs)
}
private notifyAll() {

this.observers.forEach(obs => obs.notify(this.time))
}

}

A Client

28

export class ObservedClockClient implements IClockConsumer {
constructor (private theclock:IProducerClock) {

theclock.addConsumer(this)
}
// is this the best way to initialize the time?
private time = 0

notify (t:number) : void {this.time = t}
getTime () : number {return this.time}

}

Discussion
• Is initializing time to 0 the best way to initialize the

client’s time?
• How could we better arrange to initialize the clock

client?

29

Tests

30

test("single observer", () => {
const clock1 = new ProducerClock()
const observer1
= new ObservedClockClient(clock1)

expect(observer1.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(observer1.getTime()).toBe(2)

})

test("Multiple Observers", () => {
const clock1 = new ProducerClock()
const observer1
= new ObservedClockClient(clock1)

const observer2
= new ObservedClockClient(clock1)

const observer3
= new ObservedClockClient(clock1)

clock1.tick()
clock1.tick()
expect(observer1.getTime()).toBe(2)
expect(observer2.getTime()).toBe(2)
expect(observer3.getTime()).toBe(2)

})

clockUsingPush.test.ts

The observer gets to decide what to do with
the notification

31

export class DifferentClockClient implements IClockConsumer {
constructor (private theclock:IProducerClock) {

theclock.addObserver(this)
}
private twicetime = 0 // twice the last time we received
private notifications : number[] = [] // just for fun
notify(t: number) {

this.twicetime = t * 2
this.notifications.push(t)
}

getTime() { return (this.twicetime / 2) }
}

Better test this, too

32

test("test of DifferentClockClient", () => {
const clock1 = new ProducerClock()
const observer1 = new DifferentClockClient(clock1)
expect(observer1.getTime()).toBe(0)
clock1.tick()
expect(observer1.getTime()).toBe(1)
clock1.tick()
expect(observer1.getTime()).toBe(2)

})

Details and Variations
• How does the producer get an initial value?
• How does the consumer get an initial value from

the producer?
• maybe it gets it when it subscribes?
• maybe it should pull it from the producer?

• Should there be an unsubscribe method?

33

Pattern 3: The Factory Pattern
• The situation:

• Your task is to write some code that depends only an
interface, not on a class that implements it.

• But your task requires you to create some objects that satisfy
the interface.

• What to do? You can’t call ‘new’, because that would require
you to know the class name.

• How to organize this?
• Create a Factory whose job it is to create the objects.
• Call the factory when you need a new object.
• Your code will depend only on the interface, because that’s all

you have to work with.
• Often our assignments will be structured in this way.
• This is a little confusing; let's look at an example

34

The Interfaces

35

// from IClock.ts, as before...
export default interface IClock {

reset():void
tick():void
getTime():number

}

interface IClockFactory {
// returns an object satisfying the IClock interface
instance() : IClock
// returns a string specifying which clock
// this factory makes
clockType : string
// returns the number of clocks created by this factory
numCreated() : number

}

clockFactories.ts

Some Factories...

36

import * as Clocks from './clocks'

class ClockFactory1 implements IClockFactory {
clockType = “Larry"
numcreated = 0
public instance() : IClock {

this.numcreated++;
return new Clocks.Clock1}

public numCreated() {return this.numcreated}
}

class ClockFactory2 implements IClockFactory {
clockType = “Curly"
numcreated = 0
public instance() : IClock {

this.numcreated++;
return new Clocks.Clock2}

public numCreated() {return this.numcreated}
}

clockFactories.ts

Choose which factory to export

37

// choose which of the factories to export,
// but don't tell anybody which one it is.

export default ClockFactory1
// export default ClockFactory2
// export default ClockFactory3

clockFactories.ts

TypeScript has a neat way of doing this.

Test to see that the clock factory produces a
working clock

38

import ClockFactory from './clockFactories'

test("test of the Clock produced by the ClockFactory", () => {
const factory1 = new ClockFactory
const clock1 = factory1.instance()
expect(clock1.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(clock1.getTime()).toBe(2)
clock1.reset()
expect(clock1.getTime()).toBe(0)

})

Pattern #4: The Singleton Pattern
• Maybe you only want one clock in your system.
• The factory needn't return a fresh clock every time.
• Just have it return the same clock over and over

again.

39

Here’s the behavior we expect

40

import ClockFactory from './singletonClockFactory'

test("actions on clock1 should be visible on clock2", () => {
const clock1 = ClockFactory.instance()
const clock2 = ClockFactory.instance()
expect(clock1.getTime()).toBe(0)
expect(clock2.getTime()).toBe(0)
clock1.tick()
clock1.tick()
expect(clock1.getTime()).toBe(2)
expect(clock2.getTime()).toBe(2)
clock1.reset()
expect(clock1.getTime()).toBe(0)
expect(clock2.getTime()).toBe(0)

})

Solution: Have a factory that always returns
the same clock

41

import IClock from './IClock’
// use whichever clock factory is exported from clockFactories
import ClockFactory from './clockFactories'

export default class SingletonClockFactory {
private static isInitialized : boolean = false

private static theClock : IClock

public static instance () : IClock {
if (!(SingletonClockFactory.isInitialized)) {

SingletonClockFactory.theClock
= (new ClockFactory).instance()

SingletonClockFactory.isInitialized = true
}
return SingletonClockFactory.theClock

}
}

Describing your design using these
vocabulary words
When I create an object that needs a clock, I get a
copy of the master clock from the clock factory,
and then I have the new object register itself with
the clock.
The master clock updates my object whenever the
master clock changes.
The master clock also sends my object an update
message when it registers, so my object will always
have the latest time.

42

Discussing your design

43

I have a lot of objects, and
they each check the time
very often. If they were
constantly sending
messages to the master
clock, that would be a big
load for it. I sat down with
Pat, who is building the
master clock, and we
agreed on this design.

Why did you choose this
design?

Discussing your design (2)

44

Pat told me that the master
clock is a singleton, so they
will all be getting the same
time.

How do you know that all of
your objects will get the right
time?

The Discussion (3)

45

That's something that
happens in the module that
exports the clock factory.
Pat is building that module.
They say it's not hard, but
they will show me how to
do it in a couple of weeks.

Who is responsible for
keeping the master clock up
to date?

The Discussion (4)

46

The clock factory exports a
class with an interface that
only allows me to register.
The interface doesn’t
provide me with a method
for ticking the clock.

What's to prevent you from
ticking the master clock
yourself?

Learning Goals for this Lesson
• At this point, you should be able to

• Give 4 examples of interaction patterns and describe
their distinguishing characteristics

• Draw a picture or give an example to illustrate each one

47

	CS 4530: Fundamentals of Software Engineering��Module 4: Interaction-Level Design Patterns
	Learning Goals for this Lesson
	What is a Pattern?
	Patterns help communicate intent
	Patterns make code more comprehensible
	Patterns are intended to be flexible
	Patterns at the Interaction Level correspond to OOD Design Patterns
	The Interaction Scale: Examples
	Information Transfer: Push vs Pull
	Pattern 1: consumer asks producer ("pull")
	Pattern 2: producer tells consumer ("push")
	This is called the Observer Pattern
	Push vs. Pull: Tradeoffs
	Example: A Clock: IClock.ts
	simpleClockUsingPull.ts
	Let's test this: first try
	Use automated tests instead
	Pattern 2: producer tells consumer ("push")
	Interface for a clock using the Push pattern
	Interface for a clock listener
	Review: TypeScript interfaces
	Interfaces are where we specify behaviors
	OO Principle 1: Make Your Interfaces Meaningful
	But the compiler only checks syntax, not semantics
	Interface for a clock using the Push pattern
	Interface for a clock listener
	A ProducerClock class
	A Client
	Discussion
	Tests
	The observer gets to decide what to do with the notification
	Better test this, too
	Details and Variations
	Pattern 3: The Factory Pattern
	The Interfaces
	Some Factories...
	Choose which factory to export
	Test to see that the clock factory produces a working clock
	Pattern #4: The Singleton Pattern
	Here’s the behavior we expect
	Solution: Have a factory that always returns the same clock
	Describing your design using these vocabulary words
	Discussing your design
	Discussing your design (2)
	The Discussion (3)
	The Discussion (4)
	Learning Goals for this Lesson

